Trigonometry Identities - Easy Learning Techniques ( Notes )
Adarsh Academy S - Youtube ( Subscribe )Trigonometry Identities - Easy Learning Techniques ( Notes )
Trigonometry Identities - Easy Learning Techniques ( Notes )
Hey Everyone, I will Show you How to Learn Trigonometry Formulas Which is very Helpful For You for grow Your Concept For Derivatives .
Formula Overview ;
1 ) Pythagoras Identities .
2 ) Sum & Difference Identities
3 ) Double Angle Identities
4 ) Triple Angle Identities
5 ) Sum To Product Formula
6 ) Product To Sum Formula
This is all Most Important Identities Of Trigonometry
Pythagoras Identities
1 ) sin²θ + cos²θ = 1
2 ) 1 + tan² θ = Sec² θ
3 ) 1 + Cot ²θ = Cosec² θ
Sum & Difference Identities
1 ) Sin ( A + B ) = SinA CosB + CosA SinB
2 ) Sin ( A - B ) = SinA CosB - CosA SinB
3 ) Cos ( A + B ) = CosA Cos B - SinA Sin B
4 ) Cos ( A + B ) = CosA Cos B + SinA Sin B
5 ) tan ( A + B ) = tanA + tanB
1 - tanA tanB
6 ) tan ( A - B ) = tanA - tanB
1 + tanA tanB
7 ) Cot ( A + B ) = CotA CotB - 1
Cot A + CotB
8 ) Cot ( A - B ) = CotA CotB + 1
Cot B - Cot A
Double Angle Identities
1 ) Sin 2x = 2 Sin x Cos x
2 ) Sin 2x = 2 tanx
1+ tan²x
3 ) Cos 2x = Cos²x - Sin²x
4 ) Cos 2x = 1 - 2 Sin ²x
5 ) Cos 2x = 2 Cos²x - 1
6 ) Cos 2x = 1 - tan²x
1+ tan²x
7 ) tan 2x = 2 tan x
1 - tan ²x
8 ) Cot 2x = cot²x - 1
2Cot x
Triple Angle Identities
1 ) Sin 3x = 3 Sin x - 4 Sin³x
2 ) Cos 3x = 4 Cos³x - 3 Cos x
3 ) tan 3x = 3 tan x -tan³x
1 - 3tan²x
Sum To Product Formula
1 ) SinA + SinB = 2sin (A + B )/2 Cos( A - B )/2
2 ) SinA - SinB = 2Cos (A + B )/2 Sin( A - B )/2
3 ) CosA + CosB = 2Cos(A + B )/2 Cos( A - B )/2
4 )CosA - CosB = - 2Sin (A + B )/2 Sin( A - B )/2
Product To Sum Formula
1 ) 2 CosA CosB = Cos (A + B ) + Cos ( A - B )
2 ) 2 SinA SinB = Cos ( A - B ) - Cos ( A + B )
3 ) 2 SinA CosB = Sin ( A + B ) + Sin ( A - B )
4 ) 2 CosA SinB = Sin ( A + B ) - Sin ( A - B )
Provide pdf please
ReplyDelete