Applied Mathematics - ll : Limits | Chapter 01 | Lecture 10 Notes For Polytechnic.

Adarsh Academy S - Youtube ( Subscribe )

Applied Mathematics - ll : Limits | Chapter 01 | Lecture 10 Notes For Polytechnic. 

Hey Everyone, I will Show you How to Evaluate Of Exponential & Logarithmic Functions Very Important Questions which is Lecture 10 Of applied mathematics 2 Chapter 01 Of Module 2 Differentiation Calculus.


It's Very Important Lecture For All My students So Watch Video on youtube video & Download your Notes through below given link .

Lecture 10 Topics :

1 ) Evaluation Of Exponential Function & Logarithmic Function Limits .
2 ) Most Important Questions Based On Limits Of Exponential & Logarithmic Functions.

Evaluation Of Exponential Function & Logarithmic Function Limits

Theorem :

1 ) Lim a^x -1 / x = loga 
     x→0
   
2 ) Lim e^x - 1 / x = 1
     x→0
     
3 ) lim log ( 1+ x ) / x = 1 
     x→0



Properties Of Logarithmic Function 


  • Product property of logarithms

The product rule states that multiplication of two or more logarithms with common bases is equal to the adding the individual logarithms .

1.  log ( PQ )  = Log (P ) + Log ( Q )


  • Quotient property of logarithms

This rule states that the ratio of two logarithms with same bases is equal to the difference of the logarithms

2 ) Log ( P/Q ) = Log ( P) - Log ( Q )


  • Power property of logarithms

According to the power property of logarithm, the log of a number ‘M’ with exponent ‘n’ is equal to the product of exponent with log of a number (without exponent)

3 ) log  (x^n)  =  n log ( x ) 

  • Change of base property of logarithms
According to the change of base property of logarithm, we can rewrite a given logarithm as the ratio of two logarithms with any new base.

4 ) log a M = log b M/ log b N


Important Question Based Exponential Function 
Question 01

 Evaluate : Lim ( 2^t - 1  ) 
                     t →0       t 

Solution : View On This Page

Question 01


Question 02 :

Evaluate : Lim a^x - b^x 
                    x→0       x

Solution : View On This Page  

( Question 02 )


 Question 03 :

Evaluate : Lim      2^x - 1 
                      x→0  ✓ 1+ x - 1   
  
Solution : View On This Page 

 ( Question 03 )


Question 04 ;

Evaluate : Lim  2^3x - 3^ x 
                      x →0    sin3x     

Solution : View On This Page

( Question 04 )


 Question 05

Evaluate :

 Lim  10^x - 2^x -5^x + 1
 x→0           xsinx

Solution : View On This Page

( Question 05 )


 Question 06 ;

Evaluate : lim 3^x +3^-x - 2
                     x→0         x²

Solution : View On This Page 

( Question 06 )


Question 07;

Evaluate :  Lim log ( 1+ x³ )
                       x→0     Sin³x

Solution : View On This Page

( Question 07 )


Question 08 ;

Evaluate : Lim   log x - 1 
                   x →e      x - e

Solution : View On This Page 

( Question 08 )


Question 09 ;

Write The Value Of :

lim   e ^ 3sinx - 1
x→0          x 

Solution : View On this Page 

( Question 09 )

Important Trigonometry Formula

  • sin(x+y) = sin(x)cos(y)+cos(x)sin(y)
  • cos(x+y) = cos(x)cos(y)–sin(x)sin(y)
  • sin(x–y) = sin(x)cos(y)–cos(x)sin(y)
  • cos(x–y) = cos(x)cos(y) + sin(x)sin(y)

And Also ,
  • SinA + SinB = 2sin (A + B )/2 Cos( A - B )/2
  • SinA - SinB = 2Cos (A + B )/2 Sin( A - B )/2
  • CosA + CosB = 2Cos(A + B )/2 Cos( A - B )/2
  • CosA - CosB = - 2Sin (A + B )/2 Sin( A - B )/2

This Is complete Notes of Lecture 10 Of Chapter 01 Limits


Thank You For Visiting ✔️




Comments

Popular posts from this blog

Applied Mathematics - ll : Differentiation | Chapter 02 | Lecture 02 Notes For Polytechnic.

Rate Of Change Of Quantities | Ch 05 | Application Of Differentiation 02 Notes ; Polytechnic