Applied Mathematics - ll : Limits | Chapter 01 | Lecture 08 Notes For Polytechnic.

Adarsh Academy S - Youtube ( Subscribe )

Applied Mathematics - ll : Limits | Chapter 01 | Lecture 08 Notes For Polytechnic.


Hey Everyone, I will Show you How to Evaluate Of Trigonometry Limits & Very Important Questions which is Lecture 08 Of applied mathematics 2 Chapter 01 Of Module 2 Differentiation Calculus .


It's Very Important Lecture For All My students So Watch Video on youtube video & Download your Notes through below given link .

Lecture 08 Topics :

1 ) Evaluation Of Trigonometry Limits 
2 ) Most Important Questions Based On Trigonometry Limits

Point To be Remembered 

1 ) Evaluation Of Trigonometry Limits 

 a) Lim sin(θ) = 0
       θ→0 
  Where, θ in term of radian

b ) Lim sin(θ)/θ = 1
   θ→0 
  Where, θ in term of radian

c ) Lim tan(θ)/ θ = 1
     θ→0   
   Where, θ in term of radian

d ) Lim cos( 1 - θ )/ θ = 0
     θ→0        
   Where, θ in term of radian

Some Important Trigonometry Function 

  • sin(x+y) = sin(x)cos(y)+cos(x)sin(y)
  • cos(x+y) = cos(x)cos(y)–sin(x)sin(y)
  • sin(x–y) = sin(x)cos(y)–cos(x)sin(y)
  • cos(x–y) = cos(x)cos(y) + sin(x)sin(y)
And Also ,
  • SinA + SinB  =  2sin (A + B )/2 Cos( A - B )/2
  • SinA  - SinB  =  2Cos (A + B )/2 Sin( A - B )/2
  • CosA + CosB = 2Cos(A + B )/2 Cos( A - B )/2
  • CosA - CosB  = - 2Sin (A + B )/2 Sin( A - B )/2

Important Trigonometry Formula

Some Important Questions 

Question 01 ;

Evaluate :  lim {Sin ( x +h ) - Sinx )}/h = ?                          h→0

Solution : View On this Page 

Question 01

Question 02 ;

Evaluate : lim{ ( a+ h ) sin ( a+h ) - a sina }/h
                    h→0

Solution : View On this Page 


Question 02


Question 03 ;

Evaluate : lim ( tanx - sinx )/x³
                   x→0

Solution  : View On this Page 

Question 03


Question 04 ;

Evaluate : lim ( tanx - sinx )/ sin³x
                    x→0

Solution : View In this Page 

Question 05

This Is complete Notes of Lecture 08 Of Chapter 01 Limits



Thank you for visiting ✔️

Comments

Popular posts from this blog

Applied Mathematics - ll : Differentiation | Chapter 02 | Lecture 02 Notes For Polytechnic.

Rate Of Change Of Quantities | Ch 05 | Application Of Differentiation 02 Notes ; Polytechnic